首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1546篇
  免费   123篇
  国内免费   39篇
电工技术   3篇
综合类   20篇
化学工业   742篇
金属工艺   21篇
机械仪表   18篇
建筑科学   17篇
矿业工程   9篇
能源动力   242篇
轻工业   329篇
水利工程   2篇
石油天然气   45篇
无线电   35篇
一般工业技术   125篇
冶金工业   29篇
原子能技术   3篇
自动化技术   68篇
  2024年   5篇
  2023年   92篇
  2022年   55篇
  2021年   63篇
  2020年   107篇
  2019年   92篇
  2018年   57篇
  2017年   47篇
  2016年   75篇
  2015年   96篇
  2014年   112篇
  2013年   130篇
  2012年   112篇
  2011年   107篇
  2010年   76篇
  2009年   68篇
  2008年   35篇
  2007年   74篇
  2006年   58篇
  2005年   44篇
  2004年   19篇
  2003年   23篇
  2002年   25篇
  2001年   28篇
  2000年   11篇
  1999年   20篇
  1998年   12篇
  1997年   4篇
  1994年   3篇
  1993年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   6篇
  1986年   2篇
  1985年   3篇
  1984年   6篇
  1983年   6篇
  1982年   6篇
  1981年   5篇
  1980年   6篇
  1979年   3篇
  1978年   5篇
  1976年   1篇
  1975年   1篇
排序方式: 共有1708条查询结果,搜索用时 156 毫秒
1.
The speed of the oxygen evolution reaction seriously affects the hydrogen production efficiency of water electrolysis. Hence it is crucial to develop efficient and durable OER electrocatalysts. Construction of heterojunction catalysts is also one of the strategies to develop efficient catalysts. In this paper, a pea-like Cu/Cu2S–C3 Mott?Schottky electrocatalyst was self-constructed by vapor deposition, while CF (copper foam) was used as substrate material and copper source, and thiourea was served as sulfur source. The built-in electric field is formed at the metal-semiconductor interface, which endows it with promising electrocatalytic performance. As the working electrode, the overpotentials of Cu/Cu2S–C3 required to reach the current density of 10 and 50 mA cm?2 were about 170 and 335 mV. The impact of the Mott-Schottky structure on the catalyst was also reflected in stability. The i-t tests of the sample Cu/Cu2S–C3 were carried out under 10 and 60 mA cm?2 and performed well.  相似文献   
2.
Jiang  Nina  Li  Danyang  Liang  Lili  Xu  Qing  Shao  Lei  Wang  Shi-Bin  Chen  Aizheng  Wang  Jianfang 《Nano Research》2020,13(5):1354-1362

We describe a route to the preparation of (metal yolk)/(porous ceria shell) nanostructures through the heterogeneous growth of ceria on porous metal nanoparticles followed by the calcination-induced shrinkage of the nanoparticles. The approach allows for the control of the ceria shell thickness, the metal yolk composition and size, which is difficult to realize through common templating approaches. The yolk/shell nanostructures with monometallic Pt and bimetallic PtAg yolks featuring plasmon-induced broadband light absorption in the visible region are rationally designed and constructed. The superior photocatalytic activities of the obtained nanostructures are demonstrated by the selective oxidation of benzyl alcohol under visible light. The excellent activities are ascribed to the synergistic effects of the metal yolk and the ceria shell on the light absorption, electron-hole separation and efficient mass transfer. Our synthesis of the (metal yolk)/(porous ceria shell) nanostructures points out a way to the creation of sophisticated heteronanostructures for high-performance photocatalysis.

  相似文献   
3.
To make personalised medicine a reality, there is a significant need for cost-effective methods that enable the rapid selection of optimal nutrient intake and/or disease treatment with a minimum of side effects. In this perspective, we briefly discuss the potential of merging the advances of microfluidic devices, organoid structures and advanced analytical methods to progress towards a personalised in vitro platform for health and wellbeing. © 2019 Society of Chemical Industry  相似文献   
4.
An electrolyte Equation of State is presented by combining the Cubic Plus Association Equation of State,Mean Spherical Approximation and the Born equation.This new model uses experimental relative static permittivity,intend to predict well the activity coefficients of individual ions (ACI) and liquid densities of aqueous solutions.This new model is applied to model water + NaCl binary system and water + gas +NaCl ternary systems.The cation/anion-water interaction parameters of are obtained by fitting the exper-imental data of ACI,mean ionic activity coefficients (MIAC) and liquid densities of water + NaCl binary system.The cation/anion-gas interaction parameters are obtained by fitting the experimental data of gas solubilities in aqueous NaCl solutions.The modeling results show that this new model can correlate well with the phase equilibrium and volumetric properties.Without gas,predictions for ACI,MIAC,and liquid densities present relative average deviations of 1.3%,3.6% and 1.4% compared to experimental ref-erence values.For most gas-containing systems,predictions for gas solubilities present relative average deviations lower than 7.0%.Further,the contributions of ACI,and salting effects of NaCl on gases are ana-lyzed and discussed.  相似文献   
5.
Bimetallic phosphides have been widely investigated as electrocatalysts for oxygen evolution reaction (OER) due to their efficient activity and environmental friendliness. While the reasonable design and controllable synthesis of bimetallic phosphide with typical nanostructure is still a great challenge. Hence, we put forward a novel and straightforward way for constructing FeP nanoparticles coated Ni2P ultrathin nanotube arrays on the surface of Ni foil (FeP@Ni2P/NF), which is synthesized through two steps of electrodeposition and subsequent in-situ phosphorization process. The obtained FeP@Ni2P/NF shows excellent electrochemical activity for OER, and it only needs potential of 1.52 V vs. RHE to reach the current density of 50 mA cm−2 in an alkaline media. The excellent electrocatalytic activity of FeP@Ni2P/NF mainly benefits from: (i) the synergistic effect between FeP and Ni2P promoting electron transfer; (ii) the formation of the unique 3D ultrathin nanotube arrays increasing the quantity of active sites and avoiding the agglomeration of catalysts during testing. In addition, the influence of reaction condition on the electrochemical activity for OER has also been investigated through altering the phosphorization temperature of precursor.  相似文献   
6.
The successful synthesis of SBA-15 using silica source extracted from palm oil fuel ash (POFA) was proven with the presence of mesostructure characteristics as evidenced by low angle XRD, N2 adsorption-desorption isotherms and TEM. Different amounts of Ni were loaded on the synthesized SBA-15(POFA) using the impregnation method at 80 °C. The influence of Ni loading over the Ni/SBA-15(POFA) physiochemical properties and CO2 reforming of CH4 (CRM) were investigated in a stainless steel fixed-bed reactor at 800 °C and atmospheric pressure with 1:1 CO2:CH4 volumetric feed composition. An increment in Ni loading on SBA-15(POFA) from 1 to 5 wt% decreased the BET surface area and crystallinity of catalyst as proven by N2 adsorption–desorption and XRD analysis. The catalytic performance of CRM followed the sequence of 3 wt% > 5 wt% > 2 wt% > 1 wt% -Ni/SBA-15(POFA). This result was owing to the even distribution of Ni and good Ni–O–Si interaction of 3 wt% Ni/SBA-15(POFA) as proved by TEM, FTIR and XPS. Lowest H2/CO ratio and catalyst activity and stability of 1 wt% Ni/SBA-15(POFA) were due to the weaker Ni–O–Si interaction and small amount of basic sites that favor the reverse water gas shift (RWGS) reaction and carbon formation. The recent finding indicates that a quantity as small as 3 wt% Ni loaded onto SBA-15(POFA) could elicit outstanding catalytic performance in CRM, which was comparable with 10 wt% Ni loading catalysts reported in literature.  相似文献   
7.
Surface oxidation and ensuing damage substantially decrease the service life of High Temperature Polymer Matrix Composite (HTPMC) structures. Oxidative degradation behavior of composites is strongly dependent on the coupling between chemical and mechanical responses of the material. In a composite lamina, the onset of damage and subsequent coupled acceleration of both damage and oxidation are controlled by the transverse failure strength of the oxidized regions. The direct measurement of this strength from experimentation is challenging and cumbersome. A model-based methodology for estimating the mean transverse failure strength of the oxidized regions of a unidirectional composite is described in this paper. As the strength of the oxidized region is expected to show a high-degree of spatial variability, the estimated mean is shown to be relatively insensitive to the effect of strength variance. The developed methodology is illustrated with isothermal aging data available for a typical high-temperature composite system.  相似文献   
8.
Electrochemical water-splitting is widely regarded as one of the essential strategies to produce hydrogen energy, while Metal-organic frameworks (MOFs) materials are used to prepare electrochemical catalysts because of its controllable morphology and low cost. Herein, a series of trimetallic porous Pt-inlaid Ni–Fe nanocubes (NCs) are developed with bifunctions of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In the process of prepare the electrochemical catalysts, Pt nanoparticles are uniformly embedded in the Fe–Ni PBA cube structure, and ascorbic acid is employed as a reducing agent to reduce Pt2+ to Pt nanoparticles. In this work, the cubic structure of Fe–Ni PBA is maintained and the noble metal Pt nanoparticles are embedded. Remarkably, the formation of PBA cubes, Pt inlay and reduction are completed in one step, and Pt nanoparticles are embedded by a simple method for the first time. By employing acid etching method, a porous structure is formed on the PBA cube, which increases the exposed area of the catalyst and provides more active sites for HER and OER. Due to the porous structure, highly electrochemical active surface area and the embedded of highly dispersed Pt nanoparticles, the porous 0.6 Ni–Fe–Pt nanocubes (NCs) exhibits excellently electrocatalytic performance and durable stability to HER and OER. In this work, for HER and OER, the Tafel slopes are 81 and 65 mV dec−1, the overpotential η at the current density of 10 mA cm−2 are 463 and 333 mV, and the onset potential are 0.444 and 1.548 V, respectively. And after a 12-h i-t test and 1000 cycles of cyclic voltammetry (CV), it maintained high stability and durability. This work opens up a new preparation method for noble metal embedded MOF materials and provided a new idea for the preparation of carbon nanocomposites based on MOF.  相似文献   
9.
Developing highly active, stable and sustainable electrocatalysts for overall water splitting is of great importance to generate renewable H2 for fuel cells. Herein, we report the synthesis of electrocatalytically active, nickel foam-supported, spherical core-shell Fe-poly(tetraphenylporphyrin)/Ni-poly(tetraphenylporphyrin) microparticles (FeTPP@NiTPP/NF). We also show that FeTPP@NiTPP/NF exhibits efficient bifunctional electrocatalytic properties toward both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Electrochemical tests in KOH solution (1 M) reveal that FeTPP@NiTPP/NF electrocatalyzes the OER with 100 mA cm−2 at an overpotential of 302 mV and the HER with 10 mA cm−2 at an overpotential of 170 mV. Notably also, its catalytic performance for OER is better than that of RuO2, the benchmark OER catalyst. Although its catalytic activity for HER is slightly lower than that of Pt/C (the benchmark HER electrocatalyst), it shows greater stability than the latter during the reaction. The material also exhibits electrocatalytic activity for overall water splitting reaction at a current density of 10 mA cm−2 with a cell voltage of 1.58 V, along with a good recovery property. Additionally, the work demonstrates a new synthetic strategy to an efficient, noble metal-free-coordinated covalent organic framework (COF)-based, bifunctional electrocatalyst for water splitting.  相似文献   
10.
Dendritic fibrous type SBA-15 (DFSBA-15) was recently discovered with its outstanding catalytic performance and coke resistance as compared to the conventional SBA-15. The operating conditions for dry reforming of methane (DRM) over 10Ni/DFSAB-15 were optimized by using response surface methodology (RSM), followed by stability and regeneration study. Characterization results (TEM and FESEM) confirmed the homogenous distribution of NiO particles with no morphological change in spherical DFSBA-15 upon Ni addition. Process parameters, such as reaction temperature (X1, 700 °C–900 °C), gas hourly space velocity (X2, 15,000 mL/g.h ‒ 35,000 mL/g.h), and CH4/CO2 ratio (X3, 1–3) were studied over CO2 conversion (Y1), CH4 conversion (Y2), and H2/CO ratio (Y3). The optimal reaction conditions were found at X1 = 794.37 °C, X2 = 23,815.022 mL/g.h, and X3 = 1.199, with Y1 = 95.67%, Y2 = 93.48%, and Y3 = 0.983. The in-situ FTIR studies of adsorbed CH4, CO2, and CH4 + CO2 confirmed the formation of unidentate carbonate, bidentate carbonate, and linear carbonyl species as intermediate species. 10Ni/DFSBA-15 presented good reproducibility by using both regeneration medium (air and CO2/N2) with two-fold regeneration by air as compared to CO2/N2. It was proven that the synthesized 10Ni/DFSBA-15 was appreciably stable and prone to be regenerated by air for DRM under optimal conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号